Homogeneous type of first-order differential equations Homogeneous differential equation
a first-order ordinary differential equation in form:
m
(
x
,
y
)
d
x
+
n
(
x
,
y
)
d
y
=
0
{\displaystyle m(x,y)\,dx+n(x,y)\,dy=0}
is homogeneous type if both functions m(x, y) , n(x, y) homogeneous functions of same degree n. is, multiplying each variable parameter
λ
{\displaystyle \lambda }
, find
m
(
λ
x
,
λ
y
)
=
λ
n
m
(
x
,
y
)
{\displaystyle m(\lambda x,\lambda y)=\lambda ^{n}m(x,y)\,}
,
n
(
λ
x
,
λ
y
)
=
λ
n
n
(
x
,
y
)
.
{\displaystyle n(\lambda x,\lambda y)=\lambda ^{n}n(x,y)\,.}
thus,
m
(
λ
x
,
λ
y
)
n
(
λ
x
,
λ
y
)
=
m
(
x
,
y
)
n
(
x
,
y
)
.
{\displaystyle {\frac {m(\lambda x,\lambda y)}{n(\lambda x,\lambda y)}}={\frac {m(x,y)}{n(x,y)}}\,.}
solution method
in quotient
m
(
t
x
,
t
y
)
n
(
t
x
,
t
y
)
=
m
(
x
,
y
)
n
(
x
,
y
)
{\displaystyle {\frac {m(tx,ty)}{n(tx,ty)}}={\frac {m(x,y)}{n(x,y)}}}
, can let
t
=
1
/
x
{\displaystyle t=1/x}
simplify quotient function
f
{\displaystyle f}
of single variable
y
/
x
{\displaystyle y/x}
:
m
(
x
,
y
)
n
(
x
,
y
)
=
m
(
t
x
,
t
y
)
n
(
t
x
,
t
y
)
=
m
(
1
,
y
/
x
)
n
(
1
,
y
/
x
)
=
f
(
y
/
x
)
.
{\displaystyle {\frac {m(x,y)}{n(x,y)}}={\frac {m(tx,ty)}{n(tx,ty)}}={\frac {m(1,y/x)}{n(1,y/x)}}=f(y/x)\,.}
introduce change of variables
y
=
u
x
{\displaystyle y=ux}
; differentiate using product rule:
d
(
u
x
)
d
x
=
x
d
u
d
x
+
u
d
x
d
x
=
x
d
u
d
x
+
u
,
{\displaystyle {\frac {d(ux)}{dx}}=x{\frac {du}{dx}}+u{\frac {dx}{dx}}=x{\frac {du}{dx}}+u,}
thus transforming original differential equation separable form
x
d
u
d
x
=
f
(
u
)
−
u
;
{\displaystyle x{\frac {du}{dx}}=f(u)-u\,;}
this form can integrated directly (see ordinary differential equation).
the equations in discussion not used formulary solutions; shown demonstrate method of solution.
special case
a first order differential equation of form (a, b, c, e, f, g constants)
(
a
x
+
b
y
+
c
)
d
x
+
(
e
x
+
f
y
+
g
)
d
y
=
0
{\displaystyle (ax+by+c)dx+(ex+fy+g)dy=0\,}
where af ≠ can transformed homogeneous type linear transformation of both variables (
α
{\displaystyle \alpha }
,
β
{\displaystyle \beta }
constants):
t
=
x
+
α
;
z
=
y
+
β
.
{\displaystyle t=x+\alpha ;\,\,\,\,z=y+\beta \,.}
^ ince 1956, p. 18
Comments
Post a Comment