Protocol Cocks IBE scheme




1 protocol

1.1 setup
1.2 extract
1.3 encrypt
1.4 decrypt
1.5 correctness





protocol
setup

the pkg chooses:



extract

when user




i
d



{\displaystyle \textstyle id}

wants obtain private key, contacts pkg through secure channel. pkg



encrypt

to encrypt bit (coded




1



{\displaystyle \textstyle 1}

/





1



{\displaystyle \textstyle -1}

)




m



m





{\displaystyle \textstyle m\in {\mathcal {m}}}






i
d



{\displaystyle \textstyle id}

, user



decrypt

to decrypt ciphertext



s
=
(

c

1


,

c

2


)


{\displaystyle s=(c_{1},c_{2})}

user



i
d


{\displaystyle id}

, he



note here assuming encrypting entity not know whether



i
d


{\displaystyle id}

has square root



r


{\displaystyle r}

of



a


{\displaystyle a}

or




a


{\displaystyle -a}

. in case have send ciphertext both cases. information known encrypting entity, 1 element needs sent.


correctness

first note since




p

q

3


(
mod

4
)




{\displaystyle \textstyle p\equiv q\equiv 3{\pmod {4}}}

(i.e.




(




1

p


)

=

(




1

q


)

=

1


{\displaystyle \left({\frac {-1}{p}}\right)=\left({\frac {-1}{q}}\right)=-1}

) ,





(


a
n


)



(


a
p


)

=

(


a
q


)




{\displaystyle \textstyle \left({\frac {a}{n}}\right)\rightarrow \left({\frac {a}{p}}\right)=\left({\frac {a}{q}}\right)}

, either




a



{\displaystyle \textstyle a}

or





a



{\displaystyle \textstyle -a}

quadratic residue modulo




n



{\displaystyle \textstyle n}

.


therefore,




r



{\displaystyle \textstyle r}

square root of




a



{\displaystyle \textstyle a}

or





a



{\displaystyle \textstyle -a}

:












r

2





=


(

a

(
n
+
5

p

q
)

/

8


)


2








=


(

a

(
n
+
5

p

q

Φ
(
n
)
)

/

8


)


2








=


(

a

(
n
+
5

p

q

(
p

1
)
(
q

1
)
)

/

8


)


2








=


(

a

(
n
+
5

p

q

n
+
p
+
q

1
)

/

8


)


2








=


(

a

4

/

8


)


2








=
±
a






{\displaystyle {\begin{aligned}r^{2}&=\left(a^{(n+5-p-q)/8}\right)^{2}\\&=\left(a^{(n+5-p-q-\phi (n))/8}\right)^{2}\\&=\left(a^{(n+5-p-q-(p-1)(q-1))/8}\right)^{2}\\&=\left(a^{(n+5-p-q-n+p+q-1)/8}\right)^{2}\\&=\left(a^{4/8}\right)^{2}\\&=\pm a\end{aligned}}}



moreover, (for case




a



{\displaystyle \textstyle a}

quadratic residue, same idea holds





a



{\displaystyle \textstyle -a}

):












(



s
+
2
r

n


)




=

(



t
+
a

t


1


+
2
r

n


)

=

(



t

(
1
+
a

t


2


+
2
r

t


1


)


n


)







=

(



t

(
1
+

r

2



t


2


+
2
r

t


1


)


n


)

=

(



t


(
1
+
r

t


1


)


2



n


)







=

(


t
n


)



(



1
+
r

t


1



n


)


2


=

(


t
n


)

(
±
1

)

2


=

(


t
n


)







{\displaystyle {\begin{aligned}\left({\frac {s+2r}{n}}\right)&=\left({\frac {t+at^{-1}+2r}{n}}\right)=\left({\frac {t\left(1+at^{-2}+2rt^{-1}\right)}{n}}\right)\\&=\left({\frac {t\left(1+r^{2}t^{-2}+2rt^{-1}\right)}{n}}\right)=\left({\frac {t\left(1+rt^{-1}\right)^{2}}{n}}\right)\\&=\left({\frac {t}{n}}\right)\left({\frac {1+rt^{-1}}{n}}\right)^{2}=\left({\frac {t}{n}}\right)(\pm 1)^{2}=\left({\frac {t}{n}}\right)\end{aligned}}}








Comments

Popular posts from this blog

History Alexandra College

Independence United Arab Emirates